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Epidemiological Data are Noisy

Two types of noise:
@ Observation error: the data are probabilistically related to the true
state of the system

@ Process noise: the system progresses probabilistically

e Environmental noise: some parameter is a random variable
e Demographic noise: individual-level chance events
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Noise is addressed using stochastic models



The SIR Model is an Approximation

2000 —
1500 —
D
&)
3
© 1000 —
&)
=
O -

The SIR model (e.g., dY/dt = XY /N — ~vY') implies that changes in the
states X, Y, and Z are continuous. But, in reality individuals are either
susceptible, infected, or recovered so that X, Y, and Z are integer-valued and
changes in the system state occur as discrete steps. The differential equation is
an idealization.
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Deterministic Models

Deterministic models run like “clockwork”, given the same
starting conditions, exactly-the-same trajectory will always
be observed



The SIR Model is an Approximation

« Transmission is obscured by three sources of noise:

observation error, environmental variability, and intrinsic
demographic noise

» Demographic noise is especially important in systems
where RO = 1



The SIR Model is an Approximation

« Transmission is obscured by three sources of noise:

observation error, environmental variability, and intrinsic
demographic noise
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40% of people infected with COVID-19 are asymptomatic, a
new CDC estimate says

* Not all infections
are symptomatic

* Not all symptomatic
infections reported




The SIR Model is an Approximation

« Transmission is obscured by three sources of noise:
observation error, environmental variability, and intrinsic

demographic noise

* Variation among
individuals can
Impact parameters

Variation in environment
can Impact parameters

Severe vs. Non-severe

25 Non-severe patients
) -©- Severe patients

Nasopharyngeal swab C; value

Days from Symptom Onset

Tan et al. MedRXIV 2020



The SIR Model is an Approximation

« Transmission is obscured by three sources of noise:

observation error, environmental varlablllty, and intrinsic
demographic noise

* Think ot coin flips to conceptualize
demographic stochasticity. The more
flips, the more precision you

have to approximate the mean




The Real World

If it were possible to “re-run” an epidemic in the
real-world, we would not expect to have exactly-the-same
people become infected at exactly-the-same time.

C€NNI US Crime + Justice Energy + Environment Extreme Weather Space + Science

Another person who attended Lake of the Ozarks on
Memorial Day weekend tests positive for coronavirus

By Amir Vera, CNN
¥ (O Updated 12:11 AM ET, Sat June 13, 2020

Why is this?
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. Stochastic models aim to capture
Stochastic Models some of the random and probabilistic
features of the real-world.



Stochastic Models

Stochastic models aim to capture some of the random and
probabilistic features of the real-world.

Stochasticity has the largest effect when:

# infected is small

population size is small

when the infection has just invaded

during the trough phase of an epidemic

and when control measures are successfully applied



*Stochastic models aim to capture
some of the random and probabilistic
features of the real-world.

*Stochastic models use random
number generators, for example:

* random time-step length for
events to occur

e parameter values pulled
randomly from distributions

* reported cases pulled randomly
from distributions with the mean
being | *(mean report rate)

* Multiplicative white or pink noise

StOC h a Sth M Od e I S on the force of infection (beta™

1)




Stochastic Models: Variability
Between Simulations

Variability between simulations are
the most obvious element of
stochastic models. Mean and
variance may accurately be
predicted for simulations.
However, since each simulation is
different, it is generally impossible
to predetermine the precise
disease prevalence at any time in
the future.
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Goodness-of-Fit for Stochastic Models

* We focus on random process that (putatively)
generated data

* A model is explicit, mathematical description of this
random process

* “The likelihood” is probability that data were
produced given model and its parameters:

L(model | data) = Pr(data | model)

* Likelihood quantifies (in some sense optimally) model
goodness of fit



Likelihood Estimated for Stochastic Models

 Assume we have data, D, and model output, M
(both are vectors containing state variables). Model
predictions generated using set of parameters, 6

* Transmission dynamics subject to

— “process noise”: heterogeneity among
individuals, random differences in timing of

discrete events (environmental and demographic
stochasticity)

— “observation noise”: random errors made in
measurement process itself




Trajectory Matching

* If we ignore process noise,
then model is deterministic
and all variability attributed to
measurement error

 Observation errors assumed to
be sequentially independent

* Maximizing likelihood in this
context is called ‘trajectory
matching’




Likelihood Estimation (with no process noise)

e Data, D
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* If we assume measurement errors are normally
distributed, with mean u and variance o2 then
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Likelihood Estimation

 Under such conditions, Maximum Likelihood
Estimate, MLE, is simply parameter set with smallest

deviation from data

* Equivalent to using least square errors, to decide on
goodness of fit

— Least Squares Statistic = SSE = 2(D. — M.)2

 Then, minimize SSE to arrive at MLE



Parameter Estimation: Influenza Outbreak
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Parameter Estimation: Influenza Outbreak

: v20.47 Best fit parameter values:
n j B =1.96 (per day)
7l 1/y = 2.1 days
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more parameters to fit,
so grid search not
efficient
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Nonlinear optimization
algorithms (eg Nelder-
Mead) would be used
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SSE vs. Log Likelihood

* How do we relate SSE to loglLik?

=length of data

log(L(M(®)1D)) = —;@)g@—

=SSE/n =55E



Log(SSE)

SSE vs. Log Likelihood

SSE

15
14
13+
12 111.5
. 11
11
10
10
9.5
9

Transmission rate (f)

Recovery rate (y)

LoglLik

60— 1 T i el

65—

70 -

75 ="

80 —

Recovery rate (y)

-90

Transmission rate (f)




Surfaces often Complex

log, ,(Transmission rate (3)) -1 1 log, ,(Recovery rate (y))



