Estimation



Goals:

* The basic recipe for estimation
* The method you use should be tailored to the data and to the use



Basic Recipe of Estimation

B W

Make an observation of the world
Build a model that can replicate that observation
Define a measure of distance between observation and model

Search over many (all?) parameters to find the ones that minimize
that distance



Basic Recipe of Estimation

1. Make an observation of the world

1. Time series
2. Proportion immune

2. Build a model that can replicate that observation
* Can be dynamic or static

4. Define a measure of distance between observation and model
* For a given set of parameters, how far apart are observation and the model?

5. Search over many (all?) parameters to find the ones that minimize

that distance
* Analytically, brute force, or algorithmically



Basic Recipe of Estimation

1. Make an observation of the world

What you can observe depends on where you are:
1. Are the dynamics at equilibrium?
2. What can you measure?

3. Isthe outbreak over?
e |s it still growing exponentially?



What you can observe depends on where you are:

Are dynamics endemic or epidemic?

Endemic
(equilibrMemic

What can you measure?
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Age of cases Serology

Mean age of infection Proportion immune

Is outbreak over?
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All infections?  All symptomatic cases?
Cases seen at clinic?
Unknown subset?

Final size *

State-Space Models
POMPs

Linear Approximation

Fit SIR model
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Mean Age of Infection

* A is the mean age of infection
* L is the life expectancy at birth



Basic Recipe of Estimation

®. Make an observation of the world

2. Build a model that can replicate that observation
 Validity of the estimate depends on the match between the model and reality

* R, = L/, only holds if the age distribution of the population is exponentially
distributed (e.g. constant death rate at all ages)

* In many populations, mortality is low in the young and high in the elderly. This
leads to a population age distribution that is more rectangular

United States-2018 @ Female




Mean Age of Infection

A—L
= R

L
R, = —
07 4

* A is the mean age of infection

* L is the life expectancy at birth Not a big difference, but
a bias that is generated

by choosing the wrong
model



Basic Recipe of Estimation

-l N

Make an observation of the world
Build a model that can replicate that observation
Define a measure of distance between observation and model

Search over many (all?) parameters to find the ones that minimize
that distance

This part is trivial for mean age of infection IF the population has
homogeneous mixing. Based on what we did earlier, how would you
estimate R, for a population with age-specific mixing or force of
infection?



Basic Recipe of Estimation

-l N

Make an observation of the world
Build a model that can replicate that observation
Define a measure of distance between observation and model

Search over many (all?) parameters to find the ones that minimize
that distance

1. Build SIR model with mixing matrix and demography that reflects the population of interest
2. Foragiven R, simulate model to equilibrium and evaluate mean age of infection
3. Do this for all R, and estimate is that which is closest to observed mean age



Basic Recipe of Estimation

-l N

Make an observation of the world
Build a model that can replicate that observation
Define a measure of distance between observation and model

Search over many (all?) parameters to find the ones that minimize
that distance

1. Build SIR model with mixing matrix and demography that reflects the population of interest
2. Foragiven R, simulate model to equilibrium and evaluate mean age of infection
3. Do this for all R, and estimate is that which is closest to observed mean age

What if you have the whole age distribution of reported cases?



Are dynamics endemic or epidemic?

Endemic
(equilibrmemic

What can you measure? Is outbreak over?
Age of cases Serology No Yes

What can you measure?
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Unknown subset?
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Proportion Immune

» For the standard SIR model, the equilibrium proportion immune is
1

P(immune)=1 — —
Ro

The proportion immune can be estimated using a serological survey.



Proportion Immune

» For the standard SIR model, the equilibrium proportion immune is

1

P(immune)=1 — —
Ro

The proportion immune can be estimated using a serological survey.
This is less likely to be biased by access to care.



Proportion Immune

» For the standard SIR model, the equilibrium proportion immune is

P(immune)=1 — S
Ro

The proportion immune can be estimated using a serological survey

As with mean age of infection — this result holds for the simple case, but the
equilibrium proportion immune at equilibrium (or the age-specific seroprevalence
curve) can be simulated for any specific assumptions about model structure,
age-specific mixing, demographics



Are dynamics endemic or epidemic?

Endemic
(equilibrMemic

What can you measure? Is outbreak over?
Age of cases Serology No Yes

What can you measure?
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Epidemic Final Size

R, =1 — e RoReo

. Citation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/



Epidemic Final Size

R, =1 — e RoReo

« A useful result but challenging for estimation because we rarely can see
ALL infections.

. Citation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/



Epidemic Final Size

R, =1 — e RoReo

« A useful result but challenging for estimation because we rarely can see
ALL infections. We're more likely to see all symptomatic cases ... or all
symptomatic cases that had access to clinical care and diagnostics.

« Requires an assumption that dynamics don’t change during outbreak

. Citation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/



Epidemic Final Size

R, =1 — e RoReo

A useful result but challenging for estimation because we rarely can see
ALL infections. We're more likely to see all symptomatic cases ... or all
symptomatic cases that had access to clinical care and diagnostics.
Requires an assumption that dynamics don’t change during outbreak
More commonly applied AFTER R is estimated by another method to
predict final size*

Citation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/

* What assumption does this require?
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Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially



Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially
How does herd immunity change this?



Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Initial Geometric Growth on time scale
of infectious period

11=10*R0
12=11*R0
I, =1y * R
IT=IORg

log(I7) = log(ly) + Tlog(Ry)



Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Initial Geometric Growth on time scale
of infectious period

11=10*R0
12=11*R0
I, =1y * R
IT=IORg

log(I7) = log(ly) + Tlog(Ry)

Exponential time scale may not be
convenient for observation. What is
generation time for monkeypox?



Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Initial Geometric Growth on time scale

Exponential growth on arbitrary time scale
of infectious period

I, = [,eRo—D{y+ut

11 - IO * RO
Iz = 11 * RO
I, = Iy * R?
It = IoRg
y is the recovery rate (1/y is mean duration of infection)
log(I7) = log(ly) + Tlog(Ry) u is non-disease mortality rate, which can be ignored if
L dynamics are fast enough
Exponential time scale may not be

convenient for observation. What is
generation time for monkeypox?



Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Initial Geometric Growth on time scale

Exponential growth on arbitrary time scale
of infectious period

I, = [,eRo—D{y+ut

I =1y * Ry

I =1, xRy

I, = Io * R§ In(Y:) = In(Yp) + (Ro — D(y + )t

IT - IoRg

y is the recovery rate (1/y is mean duration of infection)
log(I7) = log(ly) + Tlog(R,) u is non-disease mortality rate, which can be ignored if

Exponential time scale may not be v qyr:ra:mlcs aLe fa.stferlo:g: dav t
convenient for observation. What is t 15 the humberintected by day

generation time for monkeypox?



cases reported

Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

2010 measles outbreak in Malawi

Exponential growth on arbitrary time scale
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In(Y;) =In(Yy) + (R — Dy + )t

500

g y is the recovery rate (1/y is mean duration of infection)

W is non-disease mortality rate, which can be ignored if
dynamics are fast enough

o - Y; is the number infected by day t
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cases reported

Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

2010 measles outbreak in Malawi

Exponential growth on arbitrary time scale
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cumulative cases reported

Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Exponential growth on arbitrary time scale

I, = [,eRo—D{y+ut

500
|

; i In(Y;) = In(Yy) + (Ro — D(y + it
£ y is the recovery rate (1/y is mean duration of infection)

W is non-disease mortality rate, which can be ignored if
dynamics are fast enough
- - | | Y; is the number infected by day t
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cumulative cases reported

Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Exponential growth on arbitrary time scale
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cumulative cases reported

Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Exponential growth on arbitrary time scale
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Fitting Time Series

*In the initial phase of an outbreak, the epidemic grows exponentially

Serial interval of SARS-CoV-2 was shortened over
time by nonpharmaceutical interventions

Sheikh Taslim Ali**, Lin Wang?>*, Eric H. Y. Lau™, Xiao-Ke Xu®, Zhanwei Du®, Ye Wu®”,
Gabriel M. Leung!, Benjamin J. Cowlingf
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Fig. 1. Serial intervals of SARS-CoV-2 substantially shortened over time in mainland China. (A) Empirical

Exponential growth on arbitrary time scale

I, = Ite(Ro—l)(yﬂt)t

In(Y;) =In(Yy) + (R — Dy + )t

y is the recovery rate (1/y is mean duration of infection)

W is non-disease mortality rate, which can be ignored if
dynamics are fast enough

Y; is the number infected by day t



Are dynamics endemic or epidemic?

Endemic
(equilibrMemic

What can you measure? Is outbreak over?
Age of cases Serology No Yes

What can you measure?
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Mean age of infection Proportion immune Allinfections? All symptomatic cases?

Cases seen at clinic?
Unknown subset?

Final size *

State-Space Models
Fit SIR model POMPs

Linear Approximation



See R Worksheet

* What should be the measure of distance?
* Trajectory matching?
* Likelihood?
- Something else?



Are dynamics endemic or epidemic?

Endemic
(equilibrM\Eemic

What can you measure? Is outbreak over?
Age of cases Serology No Yes
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Cases seen at clinic?
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State-Space Models
Fit SIR model POMPs

Linear Approximation



Fitting Real Time Series: Measurement Error

* Frequently we can only see a part of the time series, or the time
series is obscured:

* Under-reporting

* Diagnostic uncertainty

Globally Reported: 147,000 measles cases
Globally Estimated: 7.5 million measles cases

Morbidity and Mortality Weekly Report (MMWR)

’ Study: US COVID cases, deaths far higher than
cpc O O O & reported

Filed Under: COVID-19
Mary Van Beusekom | News Writer | CIDRAP News | Jan 05,2021  f Share Tweet  in Linkedin Email Print & PDF

Progress Toward Regional Measles Elimination — Worldwide, Anstimated 14 of he USpoplation

antibodies against COVID-19 by mid-November 2020,
suggesting that that the virus has infected vastly more
2 O O O - 2 O 2 O people than reported—but still not enough to come
close to the proportion needed for herd immunity,
Weekly / November 12, 2021 / 70(45);1563-1569 ;‘\;“"d"‘g to a study published today in'JAMA
etwork Open.

Meredith G. Dixon, MD'; Matt Ferrari, PhD%; Sebastien Antoni, MPH3; Xi Li, MD'; Allison Portnoy, ScD? Brian Lambert?; Sarah HauryskiZ; In the cross-sectional study, researchers from study

@ T ENVT 1,3 1. : 3. : 3. sponsors Pfizer and Merck analyzed data from
Cynthia Hatcher, MPH'; Yoann Nedelec, MPH3; Minal Patel, MD'3; James P. Alexander Jr., MD'; Claudia Steulet?; Marta Gacic-Dobo, MSc3; Paul random community seroprevalence surveys and five

A. Rota, PhD3; Mick N. Mulders, PhD3; Anindya S. Bose, MD3; Alexander Rosewell, PhD3; Katrina Kretsinger, MD'; Natasha S. Crowcroft, MD? such regional and national Centers for Disease Control

. 72 P and Prevention (CDC) surveys to estimate infection
(\W) underreporting multipliers. Seroprevalence surveys
reveal the proportion of a population that has
antibodies against a certain disease, such as COVID-
19.

After adjusting for underreporting using validated
multipliers, the analysis revealed an estimated median
46,910,006 infections with SARS-CoV-2, the virus

Government of Alberta, Chris Schwarz / Flickr cc



S

easles Incidence in Ethiop

4 _— Incidence per 100,000

Amhara
Q 2001 2008 2005 2007 2000 2011 2018
1.4 -
. 093 "
2 Addis Ababa
& &
i
2001 2008 2005 2007 2009 2011 2018 3
: 4.4
073 ©-
2001 2008 2005 2007 2009 2011 2018
0.68
5 W Oromia
i 097
o -
1.1
P 041 053
2001 2008 2005 2007 2009 2011 2018 o
a5 Posterior mean probability
of routine by 2 years
1.00
SNNPR 095
= =090
- -08
8 - -080
1.0 =
: - - 060
o E Oromia
2001 2008 2005 2007 2009 2011 2018 B (40

1 1 0.20
.
2001 2008 2005 2007 2009 2011 2013 0.00



Fitting Real Time Series: Measurement Error

* Frequently we can only see a part of the time series, or the time
series is obscured:

e Under-re porting N DemEi B Cases of fever and ra§h‘that
. Diagnostic uncertainty Nigeria Congo | Ethiopia ma'.cch.the measles clinical case
| definition
|
Many infections cause similar syndromes (a
collection of clinical symptoms): — s — Untested, clinical cases
Upper respiratory infections ->influenza, COVID Test Positive
Fever + rash -> measles
Acute flaccid paralysis -> polio _
Acute diarrhea -> cholera Ll Mozambique Niger Test Negative
Acute fever -> malaria
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Fitting Real Time Series: Measurement Error

* Frequently we can only see a part of the time series, or the time
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series is obscured:
* Under-reporting
* Diagnostic uncertainty
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We need TWO models

Process Model

True Cases True Cases True Cases
time 1 time 2 time 3
f (X1 Xe—1,0) Observation
Model
g(YelXe, @)
Reported Reported Reported
Cases time Cases time Cases time
1 2 3

V1Y 0 - can be stated as a function of these two models, unobserved states are latent variables
f(elYe-1,0,9) long history in engineering, more recently in population dynamics



We need TWO models

True Cases
time 1

Process Model

Here we might have the additional goal of
estimating the true states; i.e. the true burden of
disease among those who were not measured.

Reported
Cases time
1

f(YelY;-1,6,9)

fXelXe-1,0)

True Cases True Cases
time 2 time 3
Observation
Model
gVl Xe, @)
Reported Reported
Cases time Cases time
2 3

- can be stated as a function of these two models, unobserved states are latent variables
- long history in engineering, more recently in population dynamics




Basic Recipe of Estimation

B W

Make an observation of the world
Build a model that can replicate that observation
Define a measure of distance between observation and model

Search over many (all?) parameters to find the ones that minimize
that distance

The basic recipe offers a systematic approach to parameter
estimation. If you can simulate, you can estimate ... even if it

isn’t very efficient



