Basics of SIR Models

Some Terms

Closed v Open populations

- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- Dynamics are transient if the states are continuing to change ... more nuance later

The States **S**, **I**, and **R** reflect the number of individuals that are currently **susceptible**, **infected** (and infectious), and **recovered**, respectively

Idealized Epidemic in a Closed Community

Idealized Epidemic in a Closed Community

 $\frac{dS}{dt} = \frac{dI}{dI} = \frac{dI}{dR} = \frac{dI}{dt}$

Since we're talking about how the epidemic grows, or how the **states change over time**, we write the SIR model in terms of the derivative, with respect to time, of each of the states.

The States S, I, and R reflect the number of individuals that are currently susceptible, infected (and infectious), and recovered, respectively

Because the states are linked (an S becomes and I, and an I becomes an R) the states show up in each other's equations

Idealized Epidemic in a Closed Community

Idealized Epidemic in a Closed Community

What do we measure in the world?

- Do we measure current Is (total infected), OR
- Do we measure new ls?

How could we measure current Is? How could we measure new Is?

$$\frac{dS}{dt} = -\beta SI - \gamma I$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Contact Process

- This quantifies the rate at which susceptibles and infecteds interact
 - Increases with number (or proportion) of each
 - Creates non-linearity

• There are lots of ways to adjust this ... the most (in)famous of which is: $S \frac{I}{N}$

• There are lots of ways to adjust this ... the most (in)famous of which is: $S \frac{I}{N}$

Begon: A clarification of transmission terms in host-microparasite models https://pmc.ncbi.nlm.nih.gov/articles/PMC2869860/

Contact Process

• What other ways might contacts change with the amount of infection?

Hint: think about behavior over the last 5 years

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dI} = -\beta SI - \gamma I$$

Transmission Parameter

- SI defines the shape of contacts. β turns that into infectious contacts:
 - Rate of infectious contacts (not all contacts are infectious)
 - Probability of infection given contact

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Recovery Rate

- This is the rate, number per time, of recovery (or removal)
- If rate is high, many events happen per unit time and time between events is small

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Recovery Rate

- This is the rate, number per time, of recovery (or removal)
- So large *y* means that the average duration of infection is short

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

How realistic is this? Why do we do this? **Recovery Rate**

- This is the rate, number per time, of recovery (or removal)
- Mean duration of infection, L, is ¹/_γ
 if the distribution of infectious periods is exponential

Basic Epidemic Theory

At the start, when there are few infections, an epidemic grows (almost) exponentially

Basic Epidemic Theory

figures from Ferguson et al. *Nature* 2003

At the start, when there are few infections, an epidemic grows (almost) exponentially

We'll use this property later to estimate the transmission rate

Basic Epidemic Theory

figures from Ferguson et al. *Nature* 2003

As individuals recover and the number susceptible declines, that growth slows because Susceptibles are being depleted

When does epidemic stop growing?

Idealized Epidemic in a Closed Community

Under what conditions can the infectious compartment grow?

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

 $\frac{dI}{dt} = \beta SI - \gamma I$ $0 = \beta SI - \gamma I$ $0 = \beta S - \gamma$ $\beta S = \gamma$ $1 = \frac{\beta S}{\gamma}$

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

 $\frac{dI}{dt} = \beta SI - \gamma I$ $0 = \beta SI - \gamma I$ $0 = \beta S - \gamma$ $\beta S = \gamma$ $1 = \frac{\beta S}{\gamma}$

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

 $\frac{dI}{dt} = \beta SI - \gamma I$ $0 = \beta SI - \gamma I$ $0 = \beta S - \gamma$ $\beta S = \gamma$ $1 = \frac{\beta S}{\gamma}$

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$0 = \beta SI - \gamma I$$
$$0 = \beta S - \gamma$$
$$\beta S = \gamma$$
$$1 = \frac{\beta S}{\gamma}$$

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 = \beta SI - \gamma I$$

$$0 = \beta S - \gamma$$

$$\beta S = \gamma$$

$$1 = \frac{\beta S}{\gamma}$$

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

 $\frac{dI}{dt} = \beta SI - \gamma I$ $0 = \beta SI - \gamma I$ $0 = \beta S - \gamma$ $\beta S = \gamma$ $1 = \frac{\beta S}{\gamma}$

Condition under which I doesn't change

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$0 > \beta SI - \gamma I$$

$$0 > \beta S - \gamma$$

$$\beta S < \gamma$$

$$1 > \frac{\beta S}{\gamma}$$

Condition under which I declines ... epidemic fades

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$0 < \beta SI - \gamma I$$
$$0 < \beta S - \gamma$$
$$\beta S > \gamma$$
$$1 < \frac{\beta S}{\gamma}$$

Condition under which I grows ... epidemic grows

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dI} = -\beta SI - \gamma I$$
$$\frac{dR}{dt} = -\beta SI - \gamma I$$

Under what conditions can the infectious compartment grow?

$$\begin{aligned} \frac{dI}{dt} &= \beta SI - \gamma I \\ 0 &< \beta SI - \gamma I \\ 0 &< \beta S - \gamma \\ \beta S &> \gamma \\ 1 &< \beta SL \end{aligned}$$
Recall that $\frac{1}{\gamma} = L$ is the

mean duration of infection

R₀: The Basic Reproduction Number

$$R_0 = \frac{\beta S}{\gamma} = \beta SL$$

The expected number of new infections due to the first infection in a susceptible population

- A common currency
 - A function of the pathogen and the population (recall what β is)
 - Rarely observable directly
 - But closely related to many observable phenomena, as we'll see

Estimated values of R0 for various infections

Measles	England	1947	13-14
	Nigeria	1968	16-17
	Kansas	1920	5-6
Pertussis	England	1944-78	16-18
	Canada	1912	7-8
Chickenpox	USA	1912	7-8
	USA	1944	10-11

Basic Reproduction Number for Rubella

Estimated Ro varies over 2x even within a single country

Nakase et al 2024 Vaccine

What Does This Mean for Interventions?

$$R_0 = \frac{\beta S}{\gamma} = \beta SL$$

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S
What Does This Mean for Interventions?

$$R_0 = \frac{\beta S}{\gamma} = \beta SL$$

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S

Idealized Epidemic in a Closed Community

R_E : The Effective Reproduction Number

$$R_E = \frac{\beta p S}{\gamma} = \beta p S L$$

p is the fraction susceptible 1-*p* is the fraction immune

What does this suggest for interventions?

- Reduce β
- Reduce L (increase gamma)
- Reduce S

The expected number of new infections due to each infection in a population with some immunity

$$R_{0} = \frac{\beta S}{\gamma} = \beta SL$$
$$R_{0} = \beta SL$$
$$1 = \frac{\beta SL}{R_{0}}$$
$$1 = \frac{1}{R_{0}}S\beta L$$

What fraction of Susceptibles need to be immune in order for

$$\frac{1}{R_0}S$$
to remain?

$$R_{0} = \frac{\beta S}{\gamma} = \beta SL$$
$$R_{0} = \beta SL$$
$$1 = \frac{\beta SL}{R_{0}}$$
$$1 = \frac{1}{R_{0}}S\beta L$$

What fraction of Susceptibles need to be immune in order for

 $\frac{1}{R_0}S$ to remain?

$$T_c = 1 - \frac{1}{R_0}$$

If $T_c = 1 - \frac{1}{R_0}$ are immune **before** an outbreak then it won't be able to grow (on average)

If $T_c = 1 - \frac{1}{R_0}$ are immune **before** an outbreak then it won't be able to grow (on average)

Final Size Calculation

 $R_{\infty}=1-e^{-R_0R_{\infty}}$

Where R_{∞} is the proportion of the population infected at the end of the epidemic (the proportion in the R class at the end)

Citation:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506030/

Comparing T_c and Final Size

Many more individuals will become infected in an epidemic (on average) than need to be immunized **BEFORE** an epidemic

Herd Immunity is a relevant concept throughout an epidemic (and helps stop them), the Herd Immunity Threshold is only relevant for preventing, not stopping outbreaks.

What Happens When Births Are Added?

$$\frac{dS}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta S$$
$$\frac{dI}{dI} = \delta N - \beta SI - \gamma I - \alpha I - \delta I$$
$$\frac{dR}{dI} = \delta N - \beta SI - \gamma I - \alpha R - \delta R$$

What Happens When Births Are Added?

$$\frac{dS}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta S$$

$$\frac{dI}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta I$$
 When there's NO infection?
$$\frac{dR}{dt} = \delta N - \beta SI - \gamma I - \alpha R - \delta R$$

What Happens When Births Are Added?

$$\frac{dS}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta S$$

$$\frac{dI}{dt} = \delta N - \beta SI - \gamma I - \alpha I - \delta I$$
When there's very little infection?
$$\frac{dR}{dt} = \delta N - \beta SI - \gamma I - \alpha R - \delta R$$

Dynamics Over Time

Note that after initial overshoot, susceptibles build back up until a new outbreak occurs, the second is smaller, and the third smaller than that

Some Terms

Closed v Open populations

- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- Dynamics are transient if the states are continuing to change ... more nuance later (really)

When Does / Stop Growing?

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \delta I$$

$$0 < \beta SI - \gamma I - \alpha I - \delta I$$

$$\beta SI > \gamma I + \alpha I + \delta I$$

$$\beta S > \gamma + \alpha + \delta$$

$$1 < \frac{\beta S}{\gamma + \alpha + \delta} \equiv R_0$$

When Does / Stop Growing?

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \delta I$$

$$0 < \beta SI - \gamma I - \alpha I - \delta I$$

$$\beta SI > \gamma I + \alpha I + \delta I$$

$$\beta S > \gamma + \alpha + \delta$$

$$1 < \frac{\beta S}{\gamma + \alpha + \delta} \equiv R_0$$

Why do these terms show up in equation for R_0 ?

Equilibrium Dynamics

The stable equilibrium proportion susceptible is $\sim \frac{1}{R_0}$ and the stable proportion recovered (immune) is $\sim 1 - \frac{1}{R_0}$

Birth Rate Changes the Speed to Equilibrium

If we increase the birth rate, it takes less time to reach equilibrium under the assumption that the population isn't growing

Birth Rate Changes the Speed to Equilibrium

If we decrease the birth rate, it takes longer to reach equilibrium under the assumption that the population isn't growing

What about growing populations?

- Growing populations have more susceptibles added than recovereds being taken away (by death)
 - So a greater fraction susceptible, less indirect protection, and more transmission
- More of those susceptibles are young, so if young and old have different contact rates, then transmission and dynamics will differ in young vs. old populations ...

Influenza in Jerusalem

Some Terms

Closed v Open populations

- Closed populations have no additions due to births or immigration and no losses due to death or emigration – all dynamics due *only* to infection
 - Unrealistic, but simple and a good place to start
- Open populations can have births, immigration, deaths, emigration
 - Either explicitly or implicitly

Equilibrium and Transient

- At equilibrium, the values of all states are constant individuals may still get sick, recover, etc, but all changes balance each other out
- An *attractor* is collection of states towards which a system tends it's regular and predictable, but not static.
- Dynamics are transient if they are neither of these ... which is most of time

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples Influenza Lassa fever Legionellosis Leptospirosis Meningococcal meningitis Polio Typhoid

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples

Chickenpox Measles Pertussis Rubella

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

- ExamplesExamplesInfluenzaClLassa feverMLegionellosisPeLeptospirosisRMeningococcal meningitisPolioTyphoid
- Examples
 - Chickenpox Measles Pertussis Rubella

Modeled as a temporal change in β

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples

Measles Meningococcal meningitis

Modeled as a temporal change in β or S

- Long term dynamics often exhibit regular fluctuations around the equilibrium levels because of seasonal changes in
 - Environmental conditions
 - Behavior
 - Population movement/aggregation
 - Vector seasonality

Examples Chikungunya Dengue Malaria Trypanosomiasis West Nile Virus Yellow Fever

Requires a new compartment for the vector populations